欢迎来到专业的卓越文库网平台! 工作总结 工作计划 述职报告 心得体会 疫情防控 思想汇报 事迹材料 教案设计
当前位置:首页 > 范文大全 > 公文范文 > 正文

生物燃料:“绿色航空”新动力

时间:2022-10-19 15:40:06 来源:网友投稿

2010年,有关航空业的两则新闻引起了业内人士的广泛关注:6月8日,由空中客车公司制造的全球首架纯生物燃料飞机在柏林国际航空航天展览会上完成首飞;进入11月,汉莎航空公司宣布,将于2011年上半年在汉堡一法兰克福航线上推出全球首个使用生物燃料的民航旅客航班。恰似水穷云起,在经历了多年石油燃料价格剧烈波动的噩梦,承受了欧盟将航空纳入温室气体排放体系的压力之后,航空公司终于看到了从根本上摆脱石油依赖的曙光。航空公司新能源革命的大幕已经拉开,它不仅将深刻改变世界民航的发展模式,更将对各国航空公司未来的可持续发展空间产生深远影响。

“绿色航空”势在必行

航空界对替代能源的渴求,从未像现在这样强烈过。从莱特兄弟发明飞机以来,飞机就与石油消耗如影随形般联系在一起,并因此成为“高碳”俱乐部重要成员之一。国际权威数据显示,当前全球航空运输业每年消耗15亿17亿桶航空煤油,2008年全球航空运输业排放的二氧化碳高达6.77亿吨,尽管仅占全球总排放量的2%。但是由于高空飞行的飞机直接将二氧化碳排放在1万米左右的平流层,所产生的实际温室影响要比地面排放大4倍左右,对全球变暖的影响更直接、更明显。此外,飞机在飞行过程中还排放出大量氮氧化物、水蒸气,都对全球变暖有重要影响。

从上世纪70年代以来,尽管由于飞机和引擎技术的不断提高,飞机发动机的燃烧效率在过去40年已经提高了70%,但这些进步被同一时期航空业的快速发展所抵消。飞机绝对排放量不仅没有下降,反而还在迅速上升。根据欧盟的统计,欧盟境内二氧化碳排放在20世纪90年代整体下降5.5%,而其成员国国际航空温室气体的排放在这段时间增加73%,且预计到2012年将增加150%。与此同时,石油等不可再生石化能源资源的日趋枯竭,进一步给航空运输业未来的可持续发展蒙上了一层阴影。

面对能源危机和气候变化的双重挑战,仅凭飞机燃烧效率和航空公司营运效率的提高,无法确保能源的可持续,也无法从根本上实现碳减排。寻找新的替代能源,实现更绿色的飞行,成为航空运输业的当务之急。由于飞行器自身原因和安全因素,风能、水利、核燃料和太阳能等可替代能源目前均不能满足航空业的需要,可再生的生物能源成为最佳的替代选择。

古老能源的新生

生物能源,是指从生物质得到的能源,它是通过植物光合作用,将二氧化碳转化为其它形态的含碳化合物,这些物质通过燃烧可以释放能量。因此,生物能源的形成实质是生物质同化、固定阳光能和大气中二氧化碳的结果。生物质具体的种类很多,植物类中最主要也是我们经常见到的有木本植物、农作物(秸秆、稻草、谷壳等)、杂草、藻类等。非植物类中主要有动物粪便、动物尸体、废水中的有机成分、垃圾中的有机成分等。

从能量的形成过程来讲,生物能源与化石能源在本质是一样的,二者的内部结构和特性也相似,可以采用相同或相近的技术进行处理和利用。不同的是,地球上的化石能源是自然生态系统经过几十亿年的漫长进化,才将巨量的碳通过光合作用以化石能源的方式固化封存于地下,从而使大气中的二氧化碳的浓度降到适合人类生存。但近几百年来,煤炭、石油等化石能源的大规模开发,使这些封存的碳被集中、快速地释放出来。如同打开了“潘多拉魔盒”,必然极大破坏生态平衡。生物燃料尽管在燃烧释放能量的同时也会释放二氧化碳,但它在成长过程中会从大气中吸收等量的二氧化碳,形成一个良性循环,理论上二氧化碳的净排放为零,能够实现“碳中性”。此外,生物能源是一种取之不尽、用之不竭的可再生能源,地球每年通过光合作用可生产1400-1800亿吨生物质,其中蕴含的能量相当于全世界能耗总量的10-20倍。

生物燃料是人类最早利用的能源。古人钻木取火、伐薪烧炭,实际上就是在使用生物能源。但是通过生物质直接燃烧获得能量是低效而不经济的。化石能源的大规模使用,使生物燃料受到冷落。从上世纪70年代以来,日益显露的环境问题让人类的目光再次投向生物能源,随着生物燃料转化技术的不断发展,古老的能源获得了新生机。

到目前为止,生物燃料的发展已经历了三个阶段。第一代生物燃料主要是以玉米、甘蔗、大豆和蓖麻等粮食作物和油料作物为原料,因其存在“与民争食”的特点而饱受非议,同时还面临原料供给的瓶颈,目前已逐步被以麦秆、草和木材等农林废弃物和贫瘠土地上生长的木本植物作为原料的第二代生物燃料和以微藻为原料的第三代生物原料所替代。第二、三代生物燃料可以不消耗粮食,不造成污染,节约大量耕地和水,发展前景被业界普遍看好,因此也被称为可持续性生物燃料。目前,生物燃料已成为人类可再生能源最重要的组成部分,约占全球可再生能源消费的74%左右。

助飞航空业的绿色能源

由于民航客机要在1万米之上高空飞行,其发动机必须适应高空缺氧、气温气压较低的恶劣环境。因而要求航空煤油有较好的低温性、安定性、蒸发性、润滑性以及无腐蚀性、不易起静电及着火危险性小等特点。目前适用于航空业的生物燃料主要是麻风树、亚麻荠、微藻和盐土植物。其中最具代表性的是麻风树和微藻。

麻风树是一种广泛分布于亚热带及干热河谷地区的热带常绿树或大型灌木,其果实称为小桐子,果实的含油率35%至41%,野生麻风树果实的最高含油量约为60%。在我国,野生麻风树主要分布于两广、琼、云、贵、川等地。麻风树生长迅速,生命力强,在部分地方可以形成连片的森林群落。3年可挂果投产,5年进入盛果期。麻风树的干果产量为300-800公斤/亩,平均产量约660公斤/亩,果实采摘期长达50年,每3.5吨小桐子可提炼出约1吨生物柴油,经过进一步精炼之后,可生成约0.15吨航空煤油。

藻类是最原始的生物之一,按大小通常分为大藻(海带、紫菜等)和微藻(直径小于1mm单细胞或丝状体)。其中用于制备生物燃料的是微藻。利用微藻发展生物能源有许多其它陆地植物不具备的优势。第一,生长环境要求简单。微藻几乎能适应各种生长环境。不管是海水、淡水、工业污废水、荒芜的滩涂盐碱地、废弃的沼泽、鱼塘,甚至下水道都可以种植微藻。第二,微藻产量非常高。一般陆地能源植物一年只能收获一到两季,而微藻几天就可收获一代,微藻单位面积的产率高出高等植物数十倍。第三,产油率极高。脂类含量比其它油料作物如玉米、油菜、麻风树等要高很多,一般含有30%-50%左右脂类,有的甚至高达80%。第四,利于环境保护。每年由微藻光合作用吸收固化的二氧化碳占全球二氧化碳固定量40%以上。微藻现今被看作是最有前景的生物燃料来源,被称为下一个“能源巨人”。

由麻风树和微藻所生成的生物煤油由于具备良好的燃料性能,能与化石燃料兼容,又可直接应用于传统发动机;与现有飞机的兼容性非常好,既能和传统的航空煤油混合,

也可完全代替传统的航空煤油,直接为飞机提供能量。此外,它比传统航空燃料的凝结点更低,燃料的每加仑能量值更高。燃烧过程中二氧化硫、氮氧化合物、碳氢化合物的排放较少,造成空气污染和酸雨现象会明显降低。由于生物燃料在运输和制造过程中会有一定的碳排放,绝对的碳中性是不存在的。不过即使考虑到这些因素,与石油燃料相比,生物燃料依然能够实现60%-80%的碳减排。

绿色飞行不再遥远

正是由于生物燃料对航空业未来发展的革命性效应,近年来,包括飞机制造商、航空公司、发动机生产商在内的航空产业链成员们以及能源和学术界领导者间的通力合作,加快了生物燃料的开发与应用的推进步伐。

自2008年2月24日波音公司与维珍航空合作完成了人类历史上首次采用添加50%生物燃料的混合燃油为动力的飞行试验以来,新西兰航空、法航、日航、美国大陆航空公司等多家航空公司先后进行了一系列类似生物燃料的试飞,证明了使用可持续性生物燃料与煤油的混合燃料的技术可行性。2010年6月,空中客车公司成功完成了以微藻为原料的纯生物燃料飞行,表明生物燃料完全可以独立为飞机的飞行提供能量。按照国际航协的计划,在完成相关安全性测试和认证后,生物燃料在2012年开始正式进入商用领域,到2020年生物燃料占航空燃油的比例将达到15%,2030年达到30%,2040年达到50%,并希望在2050年实现整个行业总量减排50%的目标。

目前,我国航空生物燃料的试验和开发工作已全面展开。2010年5月26日,中国航空集团公司与中石油、波音公司、霍尼韦尔UOP公司合作,正式启动了中国民航可持续航空生物燃料验证试飞项目。初步确定2011年年中,国航将使用一架波音747-400飞机在不同的高度和操作环境下进行不超过2小时的飞行试验。届时,该飞机的一台发动机将按1:1的比例,加注生物燃料和传统航油混合燃油。所用燃油的原料来自中石油在中国的原料基地应用UOP公司精炼加工技术转化的航空生物燃料。这次试飞将是全球首次在一个国家完成原料种植、生物燃油提炼与混合、验证飞行的全链条验证。

中科院青岛生物能源与过程研究所和美国波音公司研发中心已签署推进藻类可持续航空生物燃料合作备忘录,将在青岛组建可持续航空生物燃料联合实验室,启动微藻航空生物燃油这一能源技术的大规模研发。预计5年左右实现关键技术重大突破,形成几千吨的规模性示范,10年左右实现产业化。

生物原料的规模化种植也已启动。根据规划,我国麻风树主要分布区为西南云贵川三省,从2006年开始利用荒山荒地大规模人工种植麻风林,目前人工种植规模已达15万公顷,占中国人工种植麻风树面积的95%以上。今后几年种植规模将进一步扩大,到2020年将有7500万亩中国的荒地用于种植麻风树,其中仅四川省就将有3000万亩荒地成为麻风树种植基地。如能完成种植目标,届时产自中国的原材料所生产的生物燃料可取代全球航空运输业现有40%的石化燃料。

从现在的实验情况来看,生物燃油应用到航空业来,技术已经不是最大困难。现阶段,航空生物燃料成本还很昂贵,约为传统航空煤油的3-4倍。但随着技术进步、工艺优化和生产规模不断扩大,成本肯定会降下来,甚至比石油燃料更低。而且,生物燃油的价格要比深受地缘政治和国际游资双重影响的石油更易控制,可以帮助航空公司控制成本,减少意外开支。可以预见,使用生物燃油作为可持续航空燃油,将成为民航业发展新趋势。

把握机遇低碳领航

我国发展生物能源的空间和潜力十分巨大。据统计,全国有4600多万公顷宜林地,还有约1亿公顷不宜发展农业的废弃土地资源,可以结合生态建设种植能源植物。我国的渤海、黄海、东海、南海,按自然疆界可达473万平方公里,盐碱地面积达1.5亿亩,可供开发的微藻资源潜力巨大。近几年,我国生物能源科研技术水平进步显著,在某些领域基本与发达国家处在相近的起跑线上。面对新能源革命的浪潮,应从战略层面高度重视,抓住机遇,顺势而上,借鉴发达国家经验,加大生物能源发展的推进力度,确保在低碳经济时代占有一席之地。

强化生物能源的战略推进。国家“十二五”能源发展规划已将生物能源发展列入七大重点能源领域。要进一步细化国家层面的协调和引导,尽快建立具体、科学的产业发展路线图。做好盐碱、沼泽、山坡、半沙漠化等不宜发展农业的废弃土地资源以及海洋、河滩等资源的生物燃料开发规划,加强对生物能源产业扶持、消费补贴或金融支持力度。选择有雄厚技术积累和资金实力的生物能源生产企业,建立产业化示范基地,增强规模化生产能力。

加强新技术研发,建立生物燃料科技支撑体系。尽快建立国家级生物燃料实验室。选择拥有较强技术和人才优势的科研院所,建立能源研发基地,提升自主研发和工业化配套技术研发能力。从政策、资金各方面积极推进具备产业化条件的新技术推广。积极推进航空生物燃油精炼技术和新型发动机等关键技术领域的攻关,力争核心技术取得突破。推动生物能源国际技术合作和引进,利用后发优势,实现生物能源技术的跨越式发展。

与国际接轨,加快制定相关法规、技术标准及认证制度。目前欧美为确保在生物能源领域的话语权、裁量权,先后出台了生物燃料可持续质量标准和认证制度。如欧盟的生物燃料认证标准规定:只有二氧化碳排放总量低于化石燃料至少35%的生物燃料才能获得认证,进入欧盟市场,而且不可以破坏雨林、湿地和需要保护的土地来生产生物能源。一旦发现供应商提供的信息不真实,就将立即撤销其合格证书。我国应根据自身情况,抓紧相关法规、技术标准以及认证核实制度的制定,同时积极参与国际上关于生物液体燃料的国际研究、对话、政策协调甚至谈判,以维护自身利益,增强国际市场掌控力。

推荐访问:燃料 新动力 航空 生物

猜你喜欢